What a computer is to me is the most remarkable tool that we have ever come up with. It’s the equivalent of a bicycle for our minds.
怎么推广APP呢?
这是个比较难搞的问题,目前想到的都有。 youtube教程下面回帖 blog教程回帖 搜索所有相关内容回帖 上x发帖
What a computer is to me is the most remarkable tool that we have ever come up with. It’s the equivalent of a bicycle for our minds.
这是个比较难搞的问题,目前想到的都有。 youtube教程下面回帖 blog教程回帖 搜索所有相关内容回帖 上x发帖
痛点 Hugo 是一款很好用的静态网站生成框架,很多人用它来写 Blog,并且部署在 github pages 上,但是这个方案只能在电脑上使用,每次要写文章都需要打开电脑。 我强烈的需要一个时刻都能记录自己思考的方案,在思绪飞扬时打开手机就能马上把它记录下来。所以也就需要一款能在手机上操作的 APP。 ...
1:生成 SSH 密钥 在本地终端生成一个新的 SSH 密钥对: ssh-keygen -t rsa -b 4096 -C "[email protected]" 执行后,它会要求你指定文件名,按回车即可使用默认路径(~/.ssh/id_rsa),然后你会得到两个文件: ...
使用 ncnn 布署 pytorch 模型到 Android 手机 编译 NCNN 时要打开显卡支持 vulkan 是针对 gpu 的 -DNCNN_VULKAN=ON MobileNetV3 編譯成 MT 時要打開 CMAKE 0091 特性 cmake_minimum_required(VERSION 3.20.0) cmake_policy(SET CMP0091 NEW) set(CMAKE_MSVC_RUNTIME_LIBRARY "MultiThreaded$<$<CONFIG:Debug>:Debug>") project("client-project") 训练 YOLO \Envs\torch\Scripts\activate.ps1 python train.py --batch 6 --workers 2 --imgsz 960 --epochs 300 --data "\Core\yaml\data.yaml" --cfg "\Core\yaml\cfg.yaml" --weights \Core\weights\best.pt --device 0 转换模型 from torch import nn import torch.utils.model_zoo as model_zoo import torch.onnx from libs import define from libs.net import Net from libs.dataset import ImageDataset import os test_data = ImageDataset(define.testPath,False) test_loader = torch.utils.data.DataLoader( test_data, batch_size=1, shuffle=True) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = Net(out_dim=19).to(device) model.load_state_dict(torch.load( "./widget/last.pt" )) model.eval() def saveOnnx(): for data, target in test_loader: data, target = data.to(device), target.to(device) label = target.long() y = model(data) # Export the model torch.onnx.export(model, # model being run data, # model input (or a tuple for multiple inputs) "./widget/best.onnx", # where to save the model (can be a file or file-like object) export_params=True, # store the trained parameter weights inside the model file opset_version=10, # the ONNX version to export the model to do_constant_folding=True, # whether to execute constant folding for optimization input_names = ['input'], # the model's input names output_names = ['output'], # the model's output names dynamic_axes={'input' : {0 : 'batch_size'}, # variable lenght axes 'output' : {0 : 'batch_size'}}) traced_script_module = torch.jit.trace(model, data) return saveOnnx() # 转换 os.system("python -m onnxsim ./widget/best.onnx ./widgetbest-sim.onnx") os.system("./bin/onnx2ncnn.exe ./widget/best-sim.onnx ./widget/best.param ./widget/best.bin") os.system("./bin/ncnnoptimize.exe ./widget/best.param ./widget/best.bin ./widget/best-opt.param ./widget/best-opt.bin 65536") python .\export.py --weights weights/best.pt --img 960 --batch 1 --train python -m onnxsim best.onnx best-sim.onnx .\onnx2ncnn.exe best-sim.onnx best.param best.bin ncnnoptimize best.param best.bin best-opt.param best-opt.bin 65536 Git clone ncnn repo with submodule $ git clone https://github.com/Tencent/ncnn.git $ cd ncnn $ git submodule update --init Build for Linux / NVIDIA Jetson / Raspberry Pi Build for Windows x64 using VS2017 Build for macOS Build for ARM Cortex-A family with cross-compiling Build for Hisilicon platform with cross-compiling Build for Android Build for iOS on macOS with xcode Build for WebAssembly Build for AllWinner D1 Build for Loongson 2K1000 Build for Termux on Android Build for Linux Install required build dependencies: ...
手机端 PUSH 调试服务器到手机 adb push lldb-server /data/local/tmp chmod 755 /data/local/tmp/lldb-server 启动调试器服务 /data/local/tmp/lldb-server platform --listen "*:8888" --server 电脑端 端口转发 adb forward tcp:8888 tcp:8888 启动 LLDB .\lldb.exe 查看支持平台 platform list 选 ANDROID 平台 platform select remote-android 连接到手机 手机序列号: 9643e0ec0604 要换成当前调试的手机,使用 adb devices 查看序列号 platform connect connect://9643e0ec0604:8888 查看当前正在运行的进程 platform process list 附加上去 attach 9053 下断点 b send 跑起来 c 查看线程列表 thread list 查看调用栈 bt
1. 不要使用清华的源,要用阿里的,因为清华的源不全 2. 要使用 python launch.py 来安装一些 git 库 3. 要安装 requirements_versions.txt 带版本的 pip 库 4. 可以使用 python webui.py –port=7860 –server=0.0.0.0 –medvram 节省显存
Use ncnn to deploy pytorch model to Android phone Open graphics card support when compiling NCNN. Vulkan is for gpu -DNCNN_VULKAN=ON MobileNetV3 Open CMAKE 0091 feature when compiling into MT cmake_minimum_required(VERSION 3.20.0) cmake_policy(SET CMP0091 NEW) set(CMAKE_MSVC_RUNTIME_LIBRARY "MultiThreaded$<$<CONFIG:Debug>:Debug>") project("client-project") Train YOLO \Envs\torch\Scripts\activate.ps1 python train.py --batch 6 --workers 2 --imgsz 960 --epochs 300 --data "\Core\yaml\data.yaml" --cfg "\Core\yaml\cfg.yaml" --weights \ Core\weights\best.pt --device 0 Conversion model from torch import nn import torch.utils.model_zoo as model_zoo import torch.onnx from libs import define from libs.net import Net from libs.dataset import ImageDataset import os test_data = ImageDataset(define.testPath,False) test_loader = torch.utils.data.DataLoader( test_data, batch_size=1, shuffle=True) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = Net(out_dim=19).to(device) model.load_state_dict(torch.load( "./widget/last.pt" )) model.eval() def saveOnnx(): for data, target in test_loader: data, target = data.to(device), target.to(device) label = target.long() y = model(data) # Export the model torch.onnx.export(model, # model being run data, # model input (or a tuple for multiple inputs) "./widget/best.onnx", # where to save the model (can be a file or file-like object) export_params=True, # store the trained parameter weights inside the model file opset_version=10, # the ONNX version to export the model to do_constant_folding=True, # whether to execute constant folding for optimization input_names = ['input'], # the model's input names output_names = ['output'], # the model's output names dynamic_axes={'input': {0:'batch_size'}, # variable lenght axes 'output': {0:'batch_size'}}) traced_script_module = torch.jit.trace(model, data) return saveOnnx() # Conversion os.system("python -m onnxsim ./widget/best.onnx ./widgetbest-sim.onnx") os.system("./bin/onnx2ncnn.exe ./widget/best-sim.onnx ./widget/best.param ./widget/best.bin") os.system("./bin/ncnnoptimize.exe ./widget/best.param ./widget/best.bin ./widget/best-opt.param ./widget/best-opt.bin 65536") python .\export.py --weights weights/best.pt --img 960 --batch 1 --train python -m onnxsim best.onnx best-sim.onnx .\onnx2ncnn.exe best-sim.onnx best.param best.bin ncnnoptimize best.param best.bin best-opt.param best-opt.bin 65536 Git clone ncnn repo with submodule $ git clone https://github.com/Tencent/ncnn.git $ cd ncnn $ git submodule update --init Build for Linux / NVIDIA Jetson / Raspberry Pi Build for Windows x64 using VS2017 Build for macOS Build for ARM Cortex-A family with cross-compiling Build for Hisilicon platform with cross-compiling Build for Android Build for iOS on macOS with xcode Build for WebAssembly Build for AllWinner D1 Build for Loongson 2K1000 Build for Termux on Android Build for Linux Install required build dependencies: ...
Mobile PUSH debug server to mobile adb push lldb-server /data/local/tmp chmod 755 /data/local/tmp/lldb-server Start the debugger service /data/local/tmp/lldb-server platform --listen "*:8888" --server +++ Computer side Port forwarding adb forward tcp:8888 tcp:8888 Start LLDB . \lldb.exe View supported platforms platform list Select ANDROID platform platform select remote-android Connect to the phone Phone serial number: 9643e0ec0604 To change to the current debugging phone, use adb devices to check the serial number platform connect connect://9643e0ec0604:8888 View the currently running process platform process list Attach to attach 9053 Breakpoint b send Run up c View the list of threads thread list View the call stack bt
需求分析 分析目标用户的需求,确定 APP 要实现的核心功能和特色。这需要进行用户研究、竞品分析等。 信息架构和交互设计 根据需求和用户研究,设计 APP 的信息架构,确定界面流程和交互逻辑。常用的设计工具有 Axure、Sketch 等。 ...
一个现代的 APP 是如何诞生的? 从创意到产品上线运营所的所有步骤与工作岗位和他们需要用到的工具: 创意 产品经理:负责制定产品的目标、功能和用户体验。 设计师:负责设计产品的界面和交互。 开发人员:负责开发产品的代码。 开发 开发人员:负责开发产品的代码。 测试人员:负责测试产品的功能和性能。 质量保证工程师:负责确保产品达到质量标准。 上线 产品经理:负责制定产品上线的策略。 运营人员:负责产品上线后的运营工作,包括推广、营销、客服等。 运营 运营人员:负责产品上线后的运营工作,包括推广、营销、客服等。 数据分析师:负责分析产品的用户数据,并根据数据做出改进。 以下是一些常用的工具: ...